Timberlane Regional High School = PRECALCULUS ACC Summer Work 2019 - 2020

PreCalculus is the gateway to any future mathematics course and many science courses. Success will be attained through a positive
attitude, hard work, and perseverance, especially when topics secm extremely difficult. Time is a constraint that will prohibit us
from learning the material required of a quality PreCalculus course unless we spend some time prior to the start of class reviewing

topics you have encountered in previous math courses.

The first chapter of the PreCalculus text is titled Fundamentals. There are seven sections containing a number of topics ranging from
Geometry, Algebra I and II. It is expected these topics are mastered and therefore truly fundamentally basic. Outlined below are four
sections of practice questions to complete. For each topic below, work each problem. Take care and show pride in your work. Be
prepared to hand in quality work; work that is neat and organized for the final solution. Please includc multiple attempts (if
necessary) to arrive at a correct solution. We want to see perseverance when needed. This assigned practice work is to check if you
fully comprehend these topics. Work each problem to the best of your ability. The odd answers have been provided for you to try
some practice problems and then be able to check your work in the answers section. If you are unsuccessful, try looking for careless
errors or rework the problem from another perspective. Take the time and effort to reference examples from the text, call a friend or
look for assistance from the internet (such as Kahn Academy) for suggestions on the topic to assist you in your problem solving
endeavors! In other words, don’t give up! Each of the four review sections below will be worth 25 points. Math assignments grow in
challenge as the practice problems increase. Thus, the first five assigned problems are graded on correctness only for one point each.
The remaining five assigned problems will be assessed on two points for perseverance/effort and two points for accurately arriving at
the correct solution. Summer work is due Thursday September 5" and Friday September 6™. Summer work will account for 3% of

your first quarter average. Late work will be penalized 10 points per day. No late work will be accepted after September 12,

First five .
assig{; od Second five assigned
. . roblems... two points each for
Topic Assignment problems... one p p f Total
oint each for effort two points each for
pcorrectness correctness
1.1 Sets of Real b 4s
ages 4 —
R Numbers Ly~ 14 20, 22,
430, 34, 40, 46, 52
Pages 9 — 10
1.2 Absolute Value 10, 22, 26, 30, 38,
0, 44, 48, 54, 60
Pages 17— 18

48, 52, 60, 68, 74

1.3 Solving Equations FIO, 18, 22, 32, 38,




ages 26 — 30
, 8,12, 16, 18,
20, 22, 25, 30, 31

1.4 Rectangular
Coordinates

Note: Math Faculty will be available for assistance during summer school (July 15 through August 15, Tuesdays and
Wednesdays 8:30 - 10:30 by appointment.

In preparation for our Pre Calculus course, it is essential to have a graphing calculator. It is highly recommended to purchase a Texas

Instruments TI-84 Graphing Calculator as this will be the calculator used in class.
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1.1 Sets of Real Numbers
1.2 Absolute Value

1.3 Solving Equations (Re-
view and Preview)

1.4 Rectangular Coordi-
nates. Visualizing Data

1.5 Graphs and Graphing
Utilities
1.6 Equations of Lines

1.7 Symmetry and
Graphs. Circles

Natwral numbers have been used
sinee time inunemaorial: fractions
were employed by the ancient
Egyptians as carly as 1700 p.c.;
and the Pythagoreans, in ancient
Greeee, about 400 1.¢., discov-
ered manbers, like N2, which
cannot be fractions. —Stelan
Drobot in Real Nunibers (Engle-
wood Cliffs, N.L: Prentice-Hall,
Inc., 1964)

What secrets lie hidden in deci-
mals? —Stephan P Richards in
A Number for Your Thouglus
(New Providence, N.J.:

S. P Richards. 1982)

Figure 1

Fundamentals

Real numbers, equations, graphs—these topics set the stage for our work in pre-
caleulus. FHow much from previous courses should you remember about solving
cquations? Section 1.3 provides a review of the fundamentals, The rest of the chap-
ter reviews and begins to extend what vou've learned in previous courses aboul
eraphs and graphing. For example, we use graphs to visualize trends in

o Spending by the television networks to broadeast the Olympic Games (Exer-
cise 21, page 27)

o Internet usage (Excercise 23, pages 27-28)

e Carbon dioxide levels in the atmosphere (Example 3. page 23)

o US. population growth (Exercises 7 and 8 on page 53)

1.1 SETS OF REAL NUMBERS

Here, as in vour previous mathematics courses, most ol the numbers we deal with
are real numbers. These are the numbers used in everyday life. in the sciences. in
industry. and in business. Perhaps the simplest way to define a real number is this:
A real number is any number that can be expressed in decimal form. Some ex-
amples of real numbers are

7(=7.000...)
V3 (=14142,..)
=2/3(= —-0.6)

(Recall that the bar above the 6 in the decimal —0.6 indicates that the 6 repeats
indefinitely.)

Certain sets of real numbers are referred to often enough to be given special
names. These are summarized in the box that Tollows.

As you've seen in previous courses, the real numbers can be represented as
points on a awmber line, as shown in Figure 1. As indicated in Figure 1. the point
associated with the number zero is referred 1o as the origin,

The fundamental fact here is that there is o one-to-one correspondence be-
tween the set of real numbers and the set of points on the line. This means that cach
real number is identificd with exactly one point on the line: conversely. with cach
point on the line we identily exactly one real number. The real number associated
with a given paintis called the coordinate of the point. As a practical matter, we're

SOrigin
- e e ——— & V(NP SRS~ S——
- =3 =32 1 0 | 2 3 4
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PROPERTY SUMMARY Sets of Real Numbers
I

Name
Natural numbers
Integers

Rational numbers

Definition and Comments
These are the ordinary counting numbers: 1, 2, 3, and so on,

These are the natural numbers along with their negatives and zero.

Examples
1. 4.29. 1066
-26,0, 1, 1776

As the name suggests, these are the real numbers that are ratios of 4 (= 7). =3,
two integers (with nonzero denominators). It can be proved that 1.7 (=10, 4.3,
a real number is rational if and only il its decimal expansion 4173

terminates (c.g., 3.15) or repeats (c.g.. 2.43).

Irrational numbcers

These are the real numbers that are not rational. Section A3 of
the Appendix contains a prool of the fact that the number V2 is

V2.3 + V2,
IV2. w4+

irrational. The proof that # is irrational is more difficult. The first 47
person to prove that & is irrational was the Swiss mathematician

L H. Lambert (1728-1777).

v J m
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Figure 2

Figure 3
4 AY
T 7
a b

() The open interval e, b contains
all real numbers from o 1o b,
excluding « and b.

r B
. R
« h

(by The closed interval [a. ] comains
all real numbers from a to b,
including ¢ and h.

Figure 4

usually more interested in relative locations than precise locations on a number
line. FFor instance, since & is approximately 3.1, we show & slightly to the right of 3
in Figure 2. Similarly, since V2 is approximately 1.4, we show V2 slightly less than
hallway from | 10 2 in Figure 2.

It is often convenient to use number lines that show reference points other than
the integers used in Figure 2. For instance, Figure 3(a) displays a number line with
reference points that are multiples of w. In this casc it is the integers that we then
locate approximately. For example. in Figure 3(b) we show the approximate loca-
tion of the number 1 on such a line.

-~ O-——O—e—O0— 00—
I P 0 T 27 3w -2z - 0 T 2% 3w
(1) (h

Two of the most basic relations Tor real numbers are less than and greater than,
symbolized by < and >, respectively. For case of reference. we review these and
two related symbols in the box on page 3.

In general, relationships involving real numbers and any of the four symbols <,
=, >, and = are called inequalities. One of the simplest uses of inequalitics is in
defining certain sets of real numbers called inrervals. Roughly speaking, any unin-
terrupted portion of the number line is referred 1o as an interval. In the definitions
that follow. you'll see notations such as ¢ < v < b. This means that hoth of the in-
cqualitics ¢ < v and v < b hold: in other words. the number v is between a and b.

DEFINITION  Open Intervals and Closed Intervals

The open interval (a, b) consists of all real numbers x such that o <.x < b. See
Figure 4(a).
The closed interval [a. b| consists of all real numbers x such that a = v = b, See
Figure H(h).
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_@ PROPERTY SUMMARY Notation for Less Than and Greater Than

Notation Definition Examples

a<b a is less than b. On a number line, oriented as in Figure 1, 2<3 -4 <
2, or 3, the point a lies 1o the left of b,

asb a is less than or cqual to h. 1=33=3
b>u b is greater than a. On a number line oriented as in Figure 1. 3>2:0>—1
2. or 3. the paint b lies to the right of a. (b > a is equivalent
toa<bh)
bz=ua b is greater than or equal to a. 3=23=3

Note that the brackets in Figure 4(b) are used to indicate that the numbers a and
b arc included in the interval [a. ). whercas the parentheses in Figure 4(a) indicate
that a and b are excluded from the interval (a. b). At times you'll see notation such
as [a. b). This stands for the set of all real numbers v such that ¢ = x < b. Similarly.
(a. b] denotes the set of all numbers v such that a < x = b,

Sk EXAMPLE Understanding interval notation

Show each interval on a number line. and specily incequalities describing the
numbers v in cach interval.

(-1.2]  (-1.2)  (=1.2] [-1.2)

SOLUTION
Sce Figure 5.

- 2 -1 2 -1 2 ~ 2
1-1.2] =1.2) -2 [=1.2)
—f=y=2 -]y 2 -l<y=2 —]= -2
Figure 5

In addition 1o the four types of intervals shown in Figure 3. we can also con-
sider unbounded intervals. These are intervals that extend indefinitely in one di-
rection or the other, as shown, for example, in Figure 6. We also have a conve-
nient notation for unbounded intervals: for example. we indicate the unbounded
interval in Figure 6 with the notation (2, 00).

12

Figure 6

COMMENT AND CAUTION  T'he symbol oo is read infiniry. Ttis nota real num-
ber. and its use in the context (2. ~¢) is only to indicate that the interval has no right-
hand boundary. In the box that follows we define the five types of unbounded in-
tervals. Note that the last interval, (—ac. 20). is actually the entire real-number line,
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Figure 8

_E PROPERTY SUMMARY Unbounded Intervals

For a real number a the notations for unbounded intervals are:

Notation Defining Inequality Example
(2..00)
(01, 00) x>
|2.22)
[a,20) X=a
(=20, 2)
(—og, a) X<
2
{—x.2
(=0, a) Y=
(—oo, )
(—o0, 0)
.

EXAMPLE

Understanding notation for unbounded intervals

Indicate cach set of real numbers on a number line:

(1) (=4 (h) (=3.~).

SOLUTION

() The interval (—oc, 4] consists of all real numbers that arce less than or equal
to 4. See Figure 7.

(b) The interval (=3, a0) consists of all real numbers that are greater than —3.
Sce Figure 8.

We conelude this section by mentioning that our treatment of the real-number
system has been rather informal, and we have not derived any of the rules of arith-
metic and algebra using the most basic properties of the real numbers. However, we
do list those basic properties and derive some of their consequences in Section A2
ol the Appendix.

EXERCISE SET 1.1

nianber, an integer, a rational nanber, or a irrational nionber.

In Exercises 1-10, determine whether the mionber is a natnral

an irrational nunher and a nonzero rational are all irrational,
(For example, the following four nmumbers are irvational: 6.
VIO - 2.3V 15 and —=3V3/2)

3 “ “ ¢
{(Some numbers fit in more than one category.) The following L ) —203 2. ) 27{’}1 : 3. (a) 10 i
faets will be helpful in some cases: Any nnber of the form (h) 203/2 (h) V27/4 (h) “{ﬁ”'
N where i is a namoal iwonber that is nota perfect square, s 4. () 8.7 50 (a) 874 6. (a) V99

irrational. Also, the sum, difference. product, and quotient of (h) 8.7 (b) 8.74 (b V99 + |



7. 3VI0T + 1
9. (V3 + )4

8 (3- VY + 3+ VI
10, (1.1234)/(0.5677)

In each of Excrcises 11-20, draw a wonber line simitar o the
one shown in Figure 1. Then indicate the approximaie location
of the given number. Where necessarv, make use of the approxi-
mations V3 = 1.4 and V3 = 1.7. (The svmbol = nieans is ap-
proximately equal to.)

1L 114 12, -7/8 1314 V3
4. 1-V2 15. V2 - | 16, =V3 - |

17. Vi + V3
20, 2V3 + )2

18. V2 - V3 19. (1 + V2))2

In Exercises 21-30, draw a number line similar to the one
shown in Figure 3(a). Then indicate the approximaie location
of the given number.

2l =2 22, 372 23, #/6 24, T4
235 -1 26. 3 27. =/3 28. 32
29, 257 + | 0 2% -1

In Exercises 31-40, say whether the statement is TRUE or
FALSE. (In Exercises 37~ 40, do not use a calculator or table;
use instead the approximations V2 = 1 dand 7 = 3.1.)

3l -5< =50 32. 0< -1 33 -2=-2
M NVI-2=20 3B E>E 36. 0.7 > 0.7
37.27<6 B 2=s(z+ D2 M 22z
0. <12

to

In Exercises 41-34, express each interval using inequality not-
tion and show the given interval on a number line.

41. (2,5) 42. (-2,2) 43, [1,4)

. [-3.4] 45. [0.3) 46. (—4.0]
47. (-3.c0) 48, (V2. x) 49, [-1.x)
50. [0.cc) 5L (-oc 1) 52, (-x.-2)
S (—x.w 5, (—x.x)

. The value of the irrational number &, correct to ten deci-
" mal places (without rounding off). is 3.1415926535. By us-
ing a calculator. determine 1o how many decimal places
cach of the following quantities agrees with .
(a) (4/3)* Thisisthe value used for = in the Rhind papyrus,
an ancient Babvlonian text written about 1650 B.c,
(b) 22/7: Archimedes (287-212 i.c.) showed that
223/71 < 7 < 22/7. The use of the approximation
22/7 for 7 was introduced to the Western world
through the writings of Boethius (ca. 480-320), a
Roman philosopher. mathematician, and statesman.
Among all fractions with numerators and denomina-

1.1 Sets of Real Numbers 5

tors less than 100, the fraction 22/7 is the best approxi-
mation to .

(¢) 355/113: This approximation of 7 was obtained in
fith-century China by Zu Chong-Zhi (4130-301) and
his son. According to David Wells in 7he Penguin
Dictionary of Curious and Interesting Numbers (Har-
mondsworth, Middlesex. England: Viking Penguin,
Lid.. 1986), *"T'his is the best approximation of any
fraction below 103993/33102.°
6317 + 15V3
5

(d) ): This approximation for & was

7+ 15V3
obtained by the Indian mathematician Scrinivasa
Ramanujan (1887-1920).

Remark: A simple approximation that agrees with @ through

. . 355 0.0003Y | . _
the first 14 decimal places is m(l - —,‘—“—;) I'his approxi-

mation was also discovered by Ramanujan. For a fascinating
account of the history of 7, see the book by Petr Beckmann,
A listory of &, 10th ed. (New York: Barnes & Noble Books.
1989). and for a more modern look at 7. see Richard Preston’s
article. = The Mountains of Pi.” in 7he New Yorker (March 2.
1992, pp. 36-67).

In Exercises 36-38, give an example of irrational nuonbers a

and b such that the indicared expression is (a) rational and

(b) irrational.

56, a+b 57. ab 58. afb

§9. (a) Give an example in which the result of raising a ra-

tional number to a rational power is an irrational
number.

{b) Give an example in which the result of raising an
irrational number to a rational power is a rational
number.

60, Can an irrational number raised 1o an irrational power
vield an answer that is rational”? This problem shows that
the answer is “yes.” (However. if you study the follow-
ing solution very carcfully. you'll see that even though
we've answered the question in the affirmative. we've not
pinpointed the specific case in which an irrational number
raised to an irrational power is rational.)

(n) Let A = (V)M Now either A is rational or A is irra-
tional. If A is rational. we are done. Why?

(h) If Ais irrational, we are done. Why?

Hinr: Consider AN

Remark: For more about this problem and related questions,
see the article “Irrational Numbers.” by L . Jones and S. To-
porowski in American Mathematical Monthly., vol, 80 (1973),
pp. 423424,
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There has been a real need in analy-
sis for a convenient symbolism for
“absolute value” . . . and the two
vertical bars introduced in 1841 by
Weierstrass, as in |z2|, have met with
wide adoption; . . .—Florian Cajori
in A History of Mathematical Nota-
tions, vol. 1 (La Salle, 111.: The
Open Court Publishing Co., 1928)

1.2 ABSOLUTE VALUE

As an aid in measuring distances on the number line., we review the concept of ab-
solute value. We begin with a definition of absolute value that is geometric in na-
ture. Then, after you have developed some familiarity with the concept. we explain
a more algebraic approach that is often uscful in analytical work.

DEFINITION  Absolute Value (geometric version)

The absolute value of a real number x. denoted by |x] . is the distance from x to
the origin.

For instance, because the numbers 5 and =5 are both five units from the origin. we
have |5] = Sand |=5] = 5. Here are three more examples:

[17] = 17 |-2/3] = 2/3 0] =0

EXAMPLE

Evaluating expressions containing absolute values

Evaluate cach expression:
() 5-]6-17 (b i|-2] = |- 3].

SOLUTION
(1) 5-16-7|

5-1-1 M -2 - |-3]
-1=14

12 - 3
=1 =1

i
N

As we said at the beginning ol this section. there is an equivalent, more alge-
braic way to define absolute value. According to this cquivalent definition, the
value of |x] is v itsell when v = 0, and the value of |x] is —x when v <0 0. We can
write this symbolically as follows:

DEFINITION Absolute Value (algebraic version)

x| = { x whenxy =0 EXAMPLE
T2 1-x whenx <o |-7|=-(-7)=7

By looking at examples with specific numbers, you should be able to convinee your-
sell that both definitions yicld the same result. We use the algebraic definition of
absolute value in Examples 2 and 3.

EXAMPLE @}.Rewﬁting expressions to eliminate absolute value

Rewrite cach expression in a form that does not contain absolute values:
(@) |7 —4] +1: (b |x = 5] giventhatxy =50 (¢) |r = 5}, given that 7 -< S,




1.2 Absolute Value 7

SOLUTION
() The quantity 7 = 4 is negative (since o = 3.14), and therelore its absolute
value is cqual to = (7 = 4). In view ol this, we have

lm—d|+ 1= —(w—4)+1=-7+

ol

(b) Since v = 5, the quantity v — 5 is nonnegative, and therefore its absolute
vitlue is equal tox = Sitsell, Thus we have

[x =35 =n—23 when v = 5
(¢) Since ¢ = 5, the quantity ¢~ 5 is negative. Therefore its absolute value is

cqual to = (7 = 5). which in turn is cqual to 5 = . In view ol this. we have

[t =5 =5-1 whenr <5

EXAMPLE a Simplifying an expression containing absolute values

Simplily the expression v — 1| + v = 2|, given that x is in the open interval

(1.2).

SOLUTION
Since v is greater than 1, the quantity x — [ is positive, and consequently,

v =1 =x-1

On the other hand. we are also given that v is fess than 20 Therelore the quan-
ity v — 2 i neaative, and we have

[y =2|=—-(xr—2)=—-x+2
Putting things together now, we can write

o= 1] fx = 2] = (6 = 1) + (=x +2)
|

In the box that follows, we list several basic propertics of the absolute value.
Each ol these properties can be derived from the definitions. (With the exception
of the triangle inequality, we shall omit the derivations. For a prool ol the triangle
incquality, see Exercise 67.)

PROPERTY SUMMARY Properties of Absolute Value
3

1. Forall real numbers x, we have
(a) || =0
(b) v = x| and =S el
(c) |x|*= i

[§%)

For all real numbers a and b, we have
(a) |ab| = |al|bh| and la/b| = lal|/|b] (b # 0):
(b) Ja -+ bl = |a| + b (the triangle inequality).
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Distance = |5~ T7|=|7—-5|=2

sl
=l
o -
~J
”

-g-ih’-w

‘*:’;":' ¥ @]

-\ Rewriting an expression to eliminate absolute value

Write the expression [—2 = x| inan equivalent form that does not contain ah-

solute vilues.
SOLUTION

Note that X7 is nonnegative for any real number v, so 2 + x% is positive. Then

=2 =y = (2 4 x7)is negative. Thus
[-2 = x| = —(-2 — x) using the algebraic definition ol
absolute value
= 7 & \.'

Alternatively,

=2 =¥ = |- 12 + &)
=|-1]]2 + x| using Property 2(a)
=2+

IMwe think ol the real numbers as points ona number line, the distance between
two numbers ¢ and b is given by the absolute value of their difference. For instance.
as indicated in Figure 1, the distance between 5 and 7. namely. 2. is given by cither
|3 =7 or |7 = 5], For reference. we summarize this simple but important fact as
[ollows.

_E PROPERTY SUMMARY Distance on a Number Line

FFor real numbers ¢ and b, the distance between aand bis la = bl = b —al.

Using absolute value to rewrite

EXAMPLE statements regarding distance

Rewrite cach of the following statements using absolute value notation:
(1) The distance between 12 and =3 17,

() The distance between v and 2 s 4,

(¢) The distance between .y and 2 1s less than 4,

() The number ¢is more than five units from the origin.

SOLUTTON

(a) [12=(=3)] =17 or |=-53-12 =17

h) [x =2 =4 or |2—ux|=

(¢) jv=2] <4 or |2-x|<

() ¢ =3

EXAMPLE Displaying intervals defined

by absolute value inequalities

In cach case, the set of real numbers satisfying the given inequality is one or
more intervals on the number line, Show the interval(s) on a number line.
() |x| <2 (b) x| >2 (¢) [x =3 <1 (d) [v =3 =1




SOLUTION

“3-10 )2
Figure 2

100 2 to the left of -
Figure 3 (¢) The given uu.qualnv tells us that ¥ must be less than one unit away from 3
lx|>2 on the number line. Looking one unit to cither side of 3. then, we see that x

must lic between 2 and 4 and x cannot equal 2 or 4. See Figure 4.

. N (d) Theinequality [v = 3| = I says that.v is at least one uml away from 3 on the

?_ 1 '4 number line. This means that cither v = 4 or v = 2, as shown in Figure 5
Figure 4 [Here's an alternative way ol thinking about llm The numbers e‘mslymﬂ
v =3 <1 the given incquality are preciscly those numbers that do not satisfy the in-

equality in part (¢). So for part (d). we need to shade that portion of the
number line that was not shaded in part (¢).]

|

(#) The given incquality tells us that the distance from x to the origin is less
than two units. So. as indicated in Figure 2. the number x must lie in the

x| <2 openinterval (=2.2

(b) The condition |x| > 2 means that v is more than two units from the origin.
Thus, as mdlulu.l in Figure 3

1.2 Absolute Value 9

. the number x lies either to the right of 2 or

to!

-

-
N

Figure 5
x=3 =1

Il EXERCISE SET 1.2
A

In Exercises 1-16, evaluate cach expression.

1|3 L3+ 13

3. | -6] 4 -6 -] -6}

5. 1-1+3) 6. 16+ 3
7141 - K5 -s

9. 1=6+2f ~ {4 10,03 =df = =4
1L |-8] + -9 12. =81 - =9
|23 By, 2723

i Y] R

15 | 7(- !

16 [(=7)] + ] =7]* = (=] =3]}

In Exercises 17-24, evaluate each expression, given thata = =2,
bh=3 andc= —-4.
17. ja = b|*® 18. o« = {be
19, {c] = b} = {a] 200 th+ ] = th =i

s ai b+ e
2. g+ bt = 1h + ¢f? 22, wrhizd

a b+l
a+ b+ la=>b a+b—-a-b

23— X, —

2 2

In Exercises 25-38, rewrite each expression without wsing ab-
solute vahee notation.

235 V31— 1 26, 11 - VI + 1

27. |x = 3 given thaty = 3 28. v = 3| giventhat v < 3
29, |12+ 1§ 30,0t + 1
M |-V3 -4 32, -V3 - V5

33 jx =3 + v —4f giventhatx < 3

34 v~ 3] b jx = 4] giventhaty > 4
35 v -3 s je = df giventhit 3 <x < 4
36, |x — 3] + v — 4] given thaty =4

37 fv o+ 14 3
A8y ] o+ 3] gl

'u o

given that =3 < v < -
viven thatxy < =3

In Exercises 3948, rewrite cach statement using absohue value

notation, as in Example 5.

39, ‘The distance between xand 1is 12,

40, The distance between v and s less than 1/2.

41, The distance between x and 1 is at least 1/2.

42, The distance between v and 1 exceeds 1/2.

43, The distance between y and =4 is less than 1.

44, The distance between x* and —1 is at most 0.001.

45, The number v is less than three units from the origin.

46, ‘I'he number v is less than one unit from the number .

47. The distance between x* and a7 is less than M.

48. ‘The sum of the distances of @ and b from the origin is
greater than or equal to the distance of @ + b from the
arigin,

o

In Exercises 49- 60, the set of real numbers satisfving the given
ineqguality is one or more intervals on the number line. Show the
interval(sy on a manber line.

49, jul < d S0, jvp < 2

L] YRS | 52, x| >

LR AR TR K 54, —41 <4
S5, |y~ 3 = 56. v - 1] =!
57, x4 ) 5.\\*%‘-‘g>l
59, Jx -5 6 v+ 35 =2
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B

e

L]
“v
61. In parts (a) and (b). sketch the interval or intervals corre- 65. (As background for this exercise. you might want to work
sponding to the given inequality: Exercise 23.) Prove that
y A .
@ |x-2| < a+ b+ la- bl
b o<|x-2I<1. max(a. b) = —
(¢) Inwhat way do your answers in (a) and (b) differ? (The _ -
distinction isimportant in the study of fimits in calculus.) Hine: Consider three separate cases:a = bia > brand b > a.
62. Show that for all real numbers @ and b, we have 66. (As background for this exercise. vou might want to work

la] = 1b] = |a = b|

Hine: Beginning with the identity a = (¢ — b) + b, take
the absolute value of cach side and then use the triangle

inequality.

63. Show that

Exercise 24.) Prove that
. a+ b= la-h
min(a. b) = e

67. Complete the Tollowing steps to prove the triangle
incquality.
(a) Letaand b be real numbers. Which property in the

o+ b+ | < |a] + b + || summary box on page 7 tells us that a < | ] and

for all real numbers «. b, and c.

incquality.
64,

equation | v + dx| = =12,

I learned algebra forumatelv by not
learning it at school, and knowing
that the whole idea was to find our
what x was, and it didn’t make any
difference how you did it. — Physicist
Richard Feynman (1918-1988) in
Jagdish Mehra's The Beat of a Dif-
Jerent Drum (New York: Oxford
University Press. 1994)

{1ine: The left-hand
side can be written |a + (b + ¢)|. Now use the triangle

Explain why there arc no real numbers that satisfy the

b<|b|?

(b) Add the two incqualities in part (a) to obtain
a+b=lal +|b|.

(¢) Inasimilar fashion, add the two inequalitics ~a < |a|
and —b = | b] and deduce that —(a + b) < |a| + | b].

(d) Why do the results in parts (b) and (¢) imply that
la+b] = |a| +|b]?

Wl
11.3 SOLVING EQUATIONS
(REVIEW AND PREVIEW)

The title of al-Khwarizmi's second and most important book, Hisab al-jabr w'al mugabala

[830] ... has given us the word algebra, Al-jabr means transposing a quantity from one side of
an equation to the other, while muqabala signifies the simplification of the resulting equation.
—Stuart Hollingdale in Makers of Mathematics (Harmondsworth, Middlesex. England: Pen-
euin Books. Lid.. 1989)

“Algebra is a merry science,” Uncle Jakob would say. “We go hnting for a linde animal whose
name we don’t know:, so we call it x. When we bag our game we pounce on it and give it its right
name. " —Physicist Albert Einstein (1879-1955)

Consider the familiar expression for the area of a circle of radius r, namely. 7r°.
Here 7 is a constant; its value never changes throughout the discussion. On the
other hand, ris a variable; we can substitute any positive number for r to obtain
the arca of a particular circle. More generally, by a constant we mcan cither a par-
ticular number (such as 7, or — 17, 0or V2) or a letter with a value that remains fixed
(although perhaps unspecified) throughout a given discussion. In contrast, a vari-
able is a letter for which we can substitute any number selected from a given set of
numbers. The given set of numbers is called the domain of the variable.

Some expressions will make sense only for certain values of the variable. For
instance, 1/(x — 3) will be undefined when x is 3 (for then the denominator is zero).
So in this case we would agree that the domain of the variable x consists of all real
numbers except v = 3. Similarly, throughout this chapter we adopt the following
convention,
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The Domain Convention

The domain of a variable in a given expression is the set of all real-number values
of the variable for which the expression is defined.

IU's customary to use the letters near the end of the alphabet for variables: let-
ters from the beginning of the alphabet are used for constants, For example, in the
expression ax -+ b, the letter xois the variable and a and b are constants.

Specifying variables, constants,

EXAMPLE and the domain in an expression

Specily the variable, the constants, and the domain of the variable for cach of
the following expressions:

(a) 3v+ 4 (h) 7 (¢) av?+ by + ¢ (d) 4y + 3x .

D+ 3)°
SOLUTION
VARIABLE CONSTANTS DOMAIN

() v+ 4 A 3.4 The setof all real numbers.
(by — ] ol 1.-1.3 The set of all real numbers
- + 3 ~
v W 2] exceptr = land= -3
(€) > +hy+c¢ v ah ¢ The setof all real numbers.
(d) 4y + 3v ! X 4.3 The set of all real numbers

excepty = (.

Note: The number 2 that appears in part (¢) above is an exponent; y* is short-
hand notation for the product v X v. Similarly, in part (d) x™" is shorthand no-
tation for 1/v.

Now let's review the terminology and skills used in solving two basic types of
cquations: linear equations and quadratic equations.

DEFINITION Linear Equation in One Variable

A linear or first-degree equation in one variable is an equation that can be writ-
ten in the form

av 4 b =10 with ¢ and b real numbers and a = ()

Here are three examples of lincar equations in one variable:
2v = |0, Jim+ 1 =2, and
As with any equation involving a variable, cach of these equations is neither true

naor false wuil we replace the variable with a number. By a solution or a root of an
equation in one variable, we mean a value for the variable that makes the equation
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atrue statement. For example, the value v = 5 is a solution of the equation 2v = 10,
since. with e = 5. the equation becomes 2(5) = 10, which is certainly true. We also
say in this case that the value v = 3 satisfies the equation. To check an equation
means to verily that the original equation with the selution substituted for the vari-
able is a true statement,

Equations that become true statements for afl values in the domain of the vari-
able are called identities. Two examples of identities are

o= 9= (x = 3)(x + 3) and  —— =4y
X

The firstis true for all real numbers: the second is true for all real numbers except
0. In contrast to this, o conditional equation is true only [or some (or perhaps none)
af the values of the variable. Two examples of conditional equations are 2v = 10
and.x =+ 1. The first of these is true only when .y = 5, The second equation has
no solution (because, intuitively at least. no number can be one more than itsell).

We say that two cquations are equivalent when they have exactly the same so-
lutions. In this section, and throughout the text. the basic method for solving an
cquation in one variable involves writing a sequence ol equivalent equations until
we finally reach an cquivalent equation of the form

variable = a number

which explicitly displays a solution of the original equation. In generating equiva-
lent equations, we rely on the following three principles. (These can be justified by
using the properties of real numbers discussed in Appendix A.2.)

Procedures That Yield Equivalent Equations

I, Adding or subtracting the same quantity on both sides of an cquation produces
an equivalent equation.

2. Multiplying or dividing both sides of an equation by the same nonzero quantity
produces an cquivalent equation,

3. Simplifying an expression on either side of an equation produces an cquivalent
cquation.

The examples that follow show how these principles are applied in solving var-
ious cquations, Nore: Beginning in Example 2, we use some basie lactoring tech-
nigues from clementary or intermediate algebra. IT you find that you need a quick
reference for factoring formulas, sce the inside back cover ol this book. For a de-
tailed review (with many examples and practice exercises) see Appendix B.4,

EXAMPLEﬁ Solving equations equivalent to linear equations

(a) Solve:3[1 = 2(x + 1)] =2 -
(b) Solve:ax + b = c;where o, b, and ¢ are constants, a # (),
2l

I 2
Y Solve: —— = ———
(¢) Solve P 7

X = g
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SOLUTION

(@) 3[1 =2(x+1))=2-ux
Il =-2v-2))=2-x simplifving the left-hand side
=1 -2v)=2—x
-3-6x=2-vx
-3-5x=2 adding v to both sides
-Sv =3 adding 3 o both sides
xr= -1 dividing both sides by =3

CHECK  Replacing x with = | in the original equation yields

(=20 22-(-1)
22+ 1 True
(b) ax + b =¢
ax =c¢-—bh subtracting b from both sides
c—=0b - .
X = — dividing both sides by a (recall that a = 0)
(

)

CHECK  Replacing x with

in the original equation vields

c—b
u( ) +bh 2«
a
c—-b+hblc
cZc¢ True

{¢) A common sirategy insolving cquations with fractions is to multiply through
by the least common denominator. This eliminates the need to work with
fractions. By factoring the denominator v° + 2x — 13, we obtain

| 2 2xv + 2

NE5 x—3 G +s)x-3)

From this we see that the least common denominator for the three fractions
is (v + 5)(x — 3). Now, multiplying both sides by this least common de-

nominator, we have

(x +3)x=3) 2Axv+3)(x-3) (2x+ 2K v +5)(x - 3)

v+s 0 x-3 T T+ -3)
v=3=2(x+35)+2x +2
X=3=2x+ 10+ 2% +2 simplifving
y=3=4r+12 simplifving
=3v=-3=12 subtracting 4 from both sides
=3y =13 adding 3 to both sides
v= -3 dividing both sides by =3

CHECK The preceding steps show that if the equation has a solution,
then the solutionis x = =35, Withx = =5, however. the left-hand side of the
original cquation becomes 1/(=35 + 5). or 1/0. which is undefined. We con-

clude therefore that the given equation has no solution.

13
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In Example 2(c) the value v = =5, which does not check in the original equation,
is called an extraneous root or extrancous solution. How is it that an extrancous so-
lution was generated in Example 2(¢)? We multiplicd both sides by (v + 3)(v — 3).
Since we didnt know at that stage whether the quantity (v + 3)(x — 3) was nonzero.
we could not be certain that the resulting equation was actually an cquivalent equa-
tion. [Indeed. as it turns out with v = =35, the quantity (v + 3)(x — 3) is cqual 10
zero.] For this reason, itis always necessary to cheek in the original equation any
solutions you oblain as a result of multiplying both sides of an equation by an ex-
pression involving the variable. We restate this advice in the box that follows,

[l PROPERTY SUMMARY Extraneous Solutions

[
Multiplying both sides of an cquation by an expression involving the variable
may introduce extrancous solutions that do not cheek in the original equa-
tion. Thercefore. it is always neeessary to check any candidates for solutions
that you obtain in this manner.

Solving equations where
the unknown is the denominator

Jrm whereex +d # 0, ve —a = ()

SOLUTTION
Multiplying both sides of the given equation by the nonzero quantity cx + d
viclds

Viex +d)=ax + b

vex + ovd = ax + b simplilying
yev = ax =0 — yd eathering terms involving
xye —a)=0b— yd factoring
b-yd |
X=- . dividing both sides by ve - g # 0
yo —a )

You should cheek for voursell that the expression [or v on the right-hand side of
this Tast equation indeed satisfies the original cquation.

In the example just concluded. we used a basic [actoring technique rom ele-
mentary algebra to solve the equations. FFactoring is also usclul in solving guadratic
cofreations,

DEFINITION Quadratic Equation

A quadratic equation is an cquation in once variable that can be written in
the form

ax by 4+ e =0 with a, b, and ¢ real numbers and a # 0
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To solve a quadratic equation by factoring, we rely on the following Tamiliar
and important property of the real-number system.

il PROPERTY SUMMARY

Zero-Product Property of Real Numbers
u

pg =0 iland only il p=0o0rqg =0 (orboth)

Applying the zero-product property

EXAMPLE to solve quadratic equations
Solve:
(1) 8x% =3 = 10x (h) 4" -9 =10

SOLUTION
(a) In preparation lor using the zero-product property. we first rewrite the
cquation so the right-hand side is zero. Then we have

Sxt=10x=-3=0
2y =3)dx+1)=0 Checek the factoring.
2x =3 =1 Jr+ 1 =0
3 |
X =3 x= -
You can cheek that the values v = 3/2 and x = = 1/4 both satisfy the given
cquation.

(b) Using dilference-ol-squares factoring, we have

2y - 3)2v+3) =10

2y —=3=10) v+ 3 =1
3 3
An = ; | X == >
You can check that the values v = 3/2 and v = —3/2 both satisfy the given

cquation.

Here's another perspective on Example 4(b). Instecad ol using lactoring to solve
the equation 4x7 = 9 = 0, we can instead rewrite it as v = 94, Taking the princi-
pal square root of both sides then vields

V= V9/4
and therelore
%
| 2 .
[ == (Why?)
| =3 )
By looking at this last cquation., we can see that there are two solutions, v = 3/2 and
x = =3/2. (Those are the only two numbers with absolute values of 3/2.) We ab-
breviate these two solutions by writing v = =3/2. In practice. we usually omit
showing the step involving the absolute value, For example. to solve the equation
9x- — 2 = 0, just rewrite it as v~ = 2/9. Then “taking square roots™ immediately

= V29 = =N\2/3

]

vields the two solutions v
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Not all quadratic cquations can be solved by factoring. Consider. for example,
the equation x* = 2x = 4 = 0. The only three possible factorizations with integer
coclficients are

(v =) (v +1) (v + 4) v —=1) (v = 2)(xv +2)
but none yields the appropriate middle term, —2v, when multiplied out. In cascs
such as these, we can use the quadratic formuda, given in the box that follows, (In
Scetion 2.1, we'll derive this formula and Took at some of its implications. For now,
though. the focus is simply on using this formula to caleulate solutions.)

The Quadratic Formula

The solutions of the quadratic equation ax® + by + ¢ = 0, where a # 0, are given by
.
_ =bix Wb —dag

2a

.5

Using the quadratic formula

EXAMPLE to solve a quadratic equation

Use the quadratic formula to solve the equation 2x° = 3 — 4y,

SOLUTION
We first rewrite the given equation as 2v° + 4y — 3 = (), so that it has the form
ax® + by + ¢ = 0. By comparing these last two cquations. we see that ¢ = 2.

b =4, and ¢ = =3. Therclore
—b = VB = dae -4 = V4 = 42)(-3)
\' — — - T
2a 2(2)
_ =4 =4 x2V(0 _ -2% VD
: 4 - 4 B 2
. . -2+ V10 -2 - V10
I'hus, the two solutions are and — .

The techniques that we've reviewed in this section for solving lincar and quad-
ratic equations will be used throughout this book: vou'll see applications in analyz-
ing graphs and functions and in solving many tvpes of applied problems. Lincar and
quadratic cquations both lall under the general heading of polynonial equations.

DEFINITION Polynomial Equation

A polynomial equation in one variable is - EXAMPLES

an cquation of the form (1) dri=5v—1=0
(f”.l‘” + a, _1.\," Vg vwn o by, = () (h] _‘_3 . 2_‘,_‘ —3r =0
where the subscripted letter a's represent (¢) 2v* — S g T Hiege AT i)

constants and the exponents on the
variable are nonnegative integers.
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IT g, is not zero, the degree of the polynomial equation is the largest exponent of
the variable that appears in the equation. For example. the degrees of equations
(a). (b). and (¢) in the box above are 2, 3, and 4. respectively.

As we've seen in this section, polvnomial cquations of degree 1 (lincar equa-
tions) and polynomial equations of degree 2 (quadratic equations) can be solved by
using fairlv basic algebra. So too can some higher-degree equations. For instance.
we can use factoring and the zero-product property to solve equation (b) in the box
above. We have

X' -2x=3)=0 factoring out the common factor x
Vv =3)xv+1)=0 factoring the quadratic
Therefore
X =10 or x=-3=0 or x+1=0 using the zero-

product property

IFrom these last three equations we conclude that the solutions of the third-degree
polynomial equation x* = 2x? = 3x = Oarc.x = 0.3, and = 1. (You should check for
yourself that cach of these numbers indeed satislies the equation.)
Unfortunately. not all polynomial equations are as casy 1o solve as this last onc.
Chapter 12 contains a more complete discussion of polynomial equations and
an answer to the lollowing question: Is there a general formula, similar to the quad-
ratic formula, for solving any polynomial equation?

| EXERCISE SET 1.3 om

"

A 19, — 5+ l 5= ,4
In Exercises 1-3, determine whether the given value is a solution R R
of the equation. - 20 SN S 2
Ldv-35=-I3y=-2 2 -=%- =2 o1 w1 27+ 3x |
) 3 7 X v 3 3 i
3. ——=———1y= -3 21 - = 3
L B R x—d4 2 -5-12 20 +3
4 (v IYrv Sy =(v=S5 23 3 5
'3- ('\‘ ])(.\ "D) = ”. A} —l D 22» (“) - = :: 23. (“) 2 - = __)_
S dm-g=0m=, v v—-2 9x
6. Verify that the numbers |+ VSand 1 = 'S botl satisfy ) _2_ - 3 ) 35
the equation x° = 2v = 4 = (), R x=2 9y-2
|
(c) 2.7 ! (c) ! >
: L €) To= € T EITT
Solve cach equation in Exercises 7-19. WX v-2 w2
7. 2x-3= -3 - - . . .
8. 2m—-1+3Im+3=0m-8 In Exercises 24 =33, solve each equation by fuctoring.
- Ten L ' 4. =50 -6=0 25 07 = 5x = -6
9.1 = Q2m+35)=~3m ) 2
) ) 26, 107~ 13z -3=10 27. 3r ~1 -4 =0
10, (v +2) (v + 1) =ux"+ 11 5 3 .
(= 4o [ = (44 0]] = 6 W+ 1F-1=0 29, 87+ - 40=0
' c 2v =11 v 30, x(2v = 13) = -6 3L x(3x - 23) =8
12, 3*3 5 13. 1 - 7=0 32, x(x + 1) =156 33407+ 2VEAX+5=0
u 2= ! 5 v+ 3 0 15 L ! In Exercises 3441, use the quadratic fornuda to solve cach
4 -1 v equation. In Exercises 34 -39, give two forms for each solution:
16. 1 i1 = 3 1 1. - L an expression containing a radical and a calcidator approxima-
v v 2y T X +

tion rounded off 1o two decimal places.
18 L M. 20 +3x -4 =0 [ AT - -9=0
r=5 x+35 -25 36, x(x +6) = =2 37 x(3x + 8) = =2
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B - 10=-V2y 39 V30 + V3= ox 59, @*(a —~ x) = b*(b + x) — 2abx. where a = b
a0, 1200 = 25r = - 12 41, 24x° + 230 = -5 b a
60, ol T O0.wherea = b
o - . . ax -~ wo—
In Exercises 4247, solve the equations using any method vou 0y .
. ¢ =
choose. ol. h 2= ; -
42, =24 43. 2 =50 =0 e e
A R - xX+2p  x-=2p dpy
Hi-r=0 45. ¥ = \V3=0 62 S b S = e = 0
46. () n(u + 18) = =81 =y ,..q ¥y
. . x—a bh-x
(b) u(u + 18) = 81 63, — = - wherea # b
47, () &7+ 1561 + 5963 =0 oo AT
(b) 144y% - Sdy = 13 o4 | - ﬁ(. - ﬁ) - '—’(1 _ ’_’) -0
48, Solve cach of the following equations for x.  /linr: Asin h X a A
the text, begin by lactoring out a common factor.
G) ¥ = 13+ 20 =0 In Fxercises 65-68, solve cach equation for the indicated
M -6 Fr=0 variable.
65, § = Ymrt 4 Yerolh: for | o DY, My )
For Exercises 49-38. solve each equation for x in tenns of the 5. 8 = et 2wl for h 66. £ on Iifory
other letters. r il —a .
49 3ax =2 =h+ 3 S0.ax+bh=by-a 07 d = aforr 68, § = ilorr
_ . XX
SlLax+b=hy+a 32, =+ —=1
a b Solve the equations in Exercises 69-74, (In these exercises,
53 I =a+bh 54 1 LI you'll need wo mudtiply both sides of the equations by expres-
X ax bx ¢ sions involving the variable. Remember to check vour answers
s L1 _1 1 in these cases.)
e oy x b 9 3 + 4 , 20 5 e -1 0
56. (1) vy = mx + b wherem # 0 Tats x T T2 s
(b) ¥y = vy =mx — x;). wherem 20 a1 -« 2 ; e = 3y 4
© F+¥o T ox Tl x4
a b X X 8 2% I
(@) Ax+ By + C=0.where A # 0 Bttt s e Y
57. (ax + by — (bx + a) = 0. wherca # b 1 1 1
5 . 2 . LAV, 2 5. Give s equation = = ~ + -
SBo(v-pP+—g)P=p g 75. Given the equation PRl
. ab . )
. () Solve 1o show x = ——— provided a + b # 0,
8 a+bh

In Exercises 59- 04, solve eaclt equation for x in terms of the (h) Check the solution.

other letters.,

1.4 RECTANGULAR COORDINATES.
A VISUALIZING DATA

The name coordinate does not appear in the work of Descartes. This term is due 1o Leibniz

Quadrant It 3 4 Quadrant | and so are abscissa and ordinate (1692). —David M. Burton in The History of Mathematics:

14 An Introduction, 2nd ed. (Dubuque, lowa: Wm. C. Brown Publishers. 1991)
—t— — . ,
32 00 1 2 3 In previous courses you learned to work with a rectangular coordinate system such
=1 as that shown in Figure 1. In this section we review some ol the most basic formu-
-2+ las and techniques that are uselul here.
Quadrant 11T} - Quacdiant [V The point of intersection of the two perpendicular number lines, or axes, is

called the origin and is denoted by the letter O. The horizontal and vertical axes
Figure 1 are often labeled the w-axis and the y-axis, respectively, but any other variables will
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100 -
80 -

10 - / 20
: T i : ; - ! ; g : - - : : c
-1 12 4 -0 =307 ), 1020 30 40
(1 A graph of the formula s = 1617 in a 1-5 coordinate system. th) A graph of the equation F = ‘-: C+ 32 ina C-F coordinate system.

[The formula relates the distance s (in feet) and the time 1
(in seconds) for an object falling in & vacuum. |

Figure 2
v
Qo — 4
Ly
R P
o
R

Figure 3

(@)

{The equation gives the relationship between the temperature C
on the Celsius scale and F on the Fahrenheit scale.)

do just as well for labeling the axes. See Figure 2 for examples of this. (We'll dis-
cuss curves or graphs like the ones in Figure 2 in later sections.)

Note that in Figures | and 2 the axes divide the plane into four regions. or quad-
rants, labeled | through IV, as shown in Figure 1. Unless indicated otherwisc. we as-
sume that the same unit of length is used on both axes. In Figure 1, the same scalces
arc used on both axes; not so in Figure 2.

Now look at the point P in Figurce 3(a). Starting [rom the origin O. onc way to
reach 12 is to move three units in the positive x-direction and then two units in the
positive y-direction. That is. the location ol /? relative to the origin and the axes is
“right 3, up 2. We say that the coordinates of 22 are (3. 2). The first number within
the parentheses conveys the information “right 3. and the second number conveys
the information “up 2.7 We say that the x-coordinate ol 2 is 3 and the y-coordinate
ol £is 2. Likewise, the coordinates of point Q in Figure 3(a) are (=2, 4). With this
coordinate notation in mind. observe in Figure 3(b) that (3. 2) and (2. 3) represent
different points: that is, the order in which the two numbers appear within the pa-
rentheses affects the location of the point. Figure 3(c) displays various points with
given coordinates: you should check for vourself that the coordinates correspond
correctly to the location of each point.

Some terminology and notation: The x-y coordinate system that we have de-
scribed is often called a Cartesian coordinate system, The term Cartesian is used in
honor of René Descartes. the seventeenth-century French philosopher and math-
ematician. The coordinates (x, y) of a point P are referred to as an ordered pair.,

) y
3
4 - 34
3 (2.3 3
2 9(3.2) 2
(—=2.h 2.h
1 o | o
3.0
e ‘ : —
ol 12 3 4 =4 =3 -2 -] 12 3 4
-1 -1- ]
(-2.-1) (2.-1
(h) (¢)
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Figure 5

Recall. for example. that (3, 2) and (2. 3) represent different points: that is, the order
of the numbers matters. The x-coordinate ol a paint is sometimes referred Lo as the
abscissa of the point: the y-coordinate is the ordinate. The notation P(x. v) means
that 7is a point that has coordinates (v, y). At times, we abbreviate the phrase e
pointwhose coordinates are (x, v) 1o simply the point (x. v).

The next part of our work in this section depends on a key result from clemen-
tary geometry, the Pythagorean theorem. For relerence. we state this theorem and
its converse in the box that follows. (For proofs ol the Pythagorcan theorem, see
Exereises 32 and 33 at the end of this section or Excercise 100 in the Chapter Review
Exercises.)

The Pythagorean Theorem and Its Converse

I. Pvthagorean Theorem
(See Figure 4.) In a right triangle the lengths of the sides are related by the
equation
@t + b = ¢
where a and b are the lengths of the sides forming the right angle and ¢ is the
length of the hypotenuse (the side opposite the right angle).
Converse

12

II the Iengths @, b, and ¢ of the sides of a triangle are related by an equation
of the form @ + b* = ¢*, then the triangle is a right triangle, and ¢ is the length
ol the hypotenuse.

EXAMPLE @ Using the Pythagorean theorem to find a distance

Use the Pythagorean theorem to caleulate the distance o between the points
(2, 1) and (0, 3).

SOLUTION

We plot the two given points and draw a line connecting them, as shown in Fig-
ure 5. Then we draw the broken lines as shown, parallel to the axes, and apply
the Pythagorean theorem to the right triangle that is formed. The base ol the
triangle is four units long. You can see this by simply counting spaces or by us-
ing absolute value, as discussed in Scetion 1.2: |6~ 2] = 4. The height of the tri-
angle is found to be two units, either by counting spaces or by computing the ab-

-

solute value: |3 = 1| = 2. Thus we have

=4+ 20 =20
d = V20 = VAV5 = 2V5

Nore: Sinee o s a distanee, we disregard the solution — V20 of the equation
d? = 20.

The method we used in Example | can be applied to derive a general for-
mula for the distance  between any two points (x), v,) and (xa. v,) (see Figure 6).
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Just as before, we draw in the right triangle and apply the Pyvthagorean theorem.
We have
&=l — x5+ e - oyl

== X))+ (- n) (Why?)
and therefore

d= V(v =)+ 0= n)
This last equation is referred to as the distance formula, For reference. we restate
it in the box that follows.

The Distance Formula

The distance d between the points (vy. y) and (¥, v,) is given by

d =V =)+ (- n)

Examples 2-4 demonstrate some simple calculations involving the distance
formula.

NOTE In computing the distance between two given points, it does not matter
which one vou treat as (v, vy) and which as (v, vy). because quantitics such as

s = xpand v, = v are negatives ol cach other and so have equal squares.

EXAMPLE fzg Using the distance formula

Calculate the distance between the points (2. =6) and (3. 3).

SOLUTION
Substituting (2. =6) for (x,. v,) and (5. 3) for (v, vs) in the distance formula.
we have

d=\V({E-2)7 + _(»— (=6)]
V349 = V0

VIV10 = 3V10

You should check Tor yoursell that the same answer is obtained using (2, —06) as
(xva. o) and (3. 3) as (x). v).

Using the distance formula and the

EAMAFLE converse of the Pythagorean theorem

i

Is the triangle with vertices D(=2, = 1). F(4. 1), and (3. 4) a right triangle?

SOLUTION
First we sketeh the triangle in question (see Figure 7). From the sketch it ap-
pears that angle £ could be a right angle, but certainly this is not a proof. We
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Figure 8

need to use the distance formula to caleulate the lengths of the three sides and
then cheek whether any relation of the form @ + b* = ¢ holds. The calculations
are as follows:

DE=V[4-(-2)F + [ "_(MM)T = V36 + 4 = VA0
EF = V4 -3) + h - =\V1i+9=VI0
DI = V3= (-2)F + [4 —W—I)] V25 + 25 = /30

Because (V40)" + (VI0) = (V30)’, D, I and Fare vertices of a right triangle
with hypotenuse D and right angle at vertex L and so AD LT is a right tri-
angle. (In Section 1o vou'll see that this result can be oblained more casily by
using the coneept ol slope.)

EXAMPLE ﬁ Using the distance formula to find a radius

(1) Find the radius rof the circle in Figure 8. (Assume that the center of the
circle is located at the origin.)

(b) Compute the arca and the circumlference of the circle. For cach answer. give
exact expressions and also caleulator approximations rounded to one deci-
mal place.

SOLUTION
(1) The radius #is the distance from center (0, 0) to the given point (=3.2) on
the cirele. Using the distance Tormula, we have

r= V(-
2 \/‘l)_

+ (2 -0y
V13 units

(b) Recall the formulas for the arca A and the circumference C of a cirele of
radius r:A = mrf and C = 27, Using the value for r from part (a). we have
A= = 7(VI13)* C = 2mr = 27 \V13 units

[ 37 square units = 22.7 units
- 4.8 square units

Il

One of the important applications of rectangular coordinates is in displaying
quantitative data. You sce instances of this every day in newspapers, in magazines.
and in textbooks as diverse as astronomy to zoology, We show some examples in
the figures and discussion that [ollow.

Table | provides world population data for the period 19651995, In Figure 9(a)
the Familiar bar graph (or coliinn charr) format is used o display the data from
the table. In Figure 9(b) we've plotted the data in a rectangular coordinate svs-
tem. On the horizontal axis the variable ¢ represents vears: the variable /2 repre-
sents population in units of one billion. The data in the lirst row of the table (which
state that the |mpu|;|linn in 19635 was 3.345 billion) arc plotted in Figure 9(h) as the
point (1965, 3.343). Likewise, the second row of data in the table gives us the point
(1975. 4.().\(1), and so on. Sometimes it 1s more convenient o work with smaller
numbers on the horizontal axis than those used in Figure Y(b). One very common
way Lo do this is indicated in Figure 9(c¢). where we are now letting the variable 1
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[l TABLE 1 World Population 1965-1995
Year Population (billions)
1963 3.345
1975 4.086
1985 4.830)
1993 5.687
Source: US. Census Bureau (International Data Base)
!J !l
T';
g 6 1 (1995, 5.687)
= @ = L
z 4. 4. o ° 1985, 4.850) B 4 " “
£, L 5, S (1975.4.030) £
£ : P = T (1965, 3.345) E -
= L= B B & Lp o i g et -
= " v v v = v v A i 0 20 30 40
o = o o)) Z ~ 7z o
o & = o = o 2 @
Year Year Year

(a) Bar graph or column chart (b) Rectangular coordinates with the

variable ¢ representing the year

(¢) Rectangular coordinates with the
variable 7 representing the number
of years since 1963

Figure 9
World population 1965 -1993

represent vears since 1963, In other words. the year 1963 is ¢ = (0, 1966 is ¢ = 1. 1967
isr=2.and 50 on. The datain the first row of Table 1 are then plotted in Figure 9(c¢)
as the point (0. 3.345). rather than (1965, 3.345). Likewise, the second row of data
in Table 1is plotted in Figure 9(c) as (10, 4.086). and so on,

Both the bar graph and the rectangular plots in Figure 9 make it immediately
clear that the world population is increasing. Is it increasing at a steady rate? Is it
increasing rapidly? In fact, one needs to exercise caution in using graphs to draw
conclusions about how fast the quantity being graphed (in this case, population) is
increasing or decreasing. For instance, Figure 10 shows another graph of world
population, this time covering the period 18001995, Figure 9(b) and Figure 10 may
lcad to different interpretations about the nature of world population growth. [In
Figure 10, the four blue dots are the data points that appear in Figure 9(b). |

As another example about the need for caution in interpreting graphs. look
at Figure T, which shows two very dilferent interpretations ol the data for SAT

!.)
7
%‘ 0O o
,_f_ @
=g *
=] e.
=z 2 e N
= (-]
~ (-]
. - ]
Figure 10 ; : C {
World population 1800-1995 1800 1850 1900 19350 2000

Source: US. Census Bureau Year
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Figure 11

Two visualizations and interpreta-
tions of the data in Table 2

\ \
512 600 L.
o
510 L 575
g so8 | o 2 550 |
E 506 | o z 55 |
e = °
<
G504 4 S 500 2 ° °
502 L 475 |
l 2 3 | 2 K
Yuear (199: s year () Year (1994 s vear 0)
(a) SAT math scores climbing! @ {h) Little improvement shown in @
SAT math scores!

TABLE 2 SAT Math Scores: National Averages 1994-1997

Year SAT math score
0 (1994) 504
| (1995) 506
2 (1996) 508
3(1997) - sh

Source: The College Board

mathematics scores in Table 2. The bottom line is that graphs are uselul. even in-
dispensible, in giving us an casy way to sec general trends in data, but we must ex-
ercise care in drawing further conclusions. especially regarding rates ol increase or
decrease. A complete analysis of how fast a quantity is increasing or decreasing
may require topics from calculus or the field of statistics. For straight-tine graphs.
however, the coneept of slope (reviewed in Section 1.0) tells us definitively about
rates of increase or decrease. Also, when we study functions in Chapter 3, we'll
make a [irst step toward answering general questions about rates of change.

In Example 5 we make use of a simple result that you may recall from previous
courses: the midpoint formula. This result is summarized in the box that follows.
(For a prool ol the formula, sce Exercise 31 at the end of this scction.)

Pix,. v §

7

e

Qivy ¥y

»
rd
rd
7~

Midpoim

THE MIDPOINT FORMULA

Example
The midpoint of the line segment The midpoint of the line segment
joining the points P(x), y,) and joining (2. —135) and (4. 5) is
Q(x, 32) is 244 —=15+5 3
—, ——— ] = (3. -5)
2 2

Xty ytw
202
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EXAMPLE E?; An application of the midpoint formula

Data concerning the amount of carbon dioxide in the atmosphere (measured in
parts pernrillion or ppm)is used by environmental scientists in the study of global
warming. Table 3 provides some figures for the period 19901996,

[ TABLE 3 Atmospheric Carbon Dioxide

Carbon dioxide
Year in atmosphere (ppm)
1990) 354.0
1992 350.3
1994 358.9
1996 362.6

Source: C. D Keeling and "I P Whaorl, Scripps Institution ol Occanography

() Plot the data in a rectangular coordinate system. Use the variable 1 on the
horizontal axis. with 1 = 0 corresponding to the year 1990. Use the variable
¢ (to denote carbon dioxide levels, in ppm) on the vertical axis.

() Use the midpoint formula and the data for 1992 and 1994 1o estimate the
amount of carbon dioxide for the year 1993,

(¢) Compute the percentage error in the estimation in part (b). given that the
actual 1993 value is 357.0 ppm. The general formula for percentage errorin
an estimation or approximation is

[(actual value) = (approximate value)
percentage error = —— ——— '

100
actual value

SOLUTION
(a) Sce Figure 12. Note that if ¢ = O corresponds 1o 1990, then 1 = 2 carresponds
1o 1992, 1 = 4 corresponds to 1994, and 1 = 6 corresponds 1o 19960,

o 364 (6, 362.0)
5 ©
= 302
%=
£.2 360 (4, 358.9)
k- .
= =358 "
25 (2, 356.3)
2e
2z = 350 L4
T E 354 4 (0.3540)
5
_ -
2 4 8
Figure 12 Yearr (1990 as ¢ = 0)

(b) The midpointof the line scgment joining the points (2,350.3) and (4.358.9) is

(2 + 4 356.3 + 3389 )

5 ! bl
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which, as you can verify, works out to
(3.357.0)

Thus, our approximation for the carbon dioxide level in 1993 (r = 3) is
357.6 ppm.
(¢) We have

[(actual value) — (approximate value)|

percentage error = X 100
actual value
[357.0 = 357.6] 100
= — X
357.0
= ().2% using a caleulator and rounding 1o ong

decimal place

In Figure 13 we show the given data for 1992 and 1994 along with the esti-
mated and the actual value for 1993,

2 RIH
2
£2 359 o4, 358.9)
- . . 4
= Midpoint ’
=2 1 ez ,
= E 358 {3, 35704 " 7
235 /P’
PRV Y /O .
=B ’  Actual data point
-5 . (2.350.3) 13,3570
Figure 13 z 356 -
The midpoint of the line =
. -~ -
segment is close 1o the I ; ; : , /
actual data point. 1 2 3 4

CAUTION Do not assume on the basis ol this one example that the midpoint
approximation always works as well as it does here. In this regard. be sure to
work Exercise 23 at the end of this section,

o}

Ll EXERCISE SET 1.4 s

A In Exercises 3= 10, caleudate the distance beoween the given
1. Plotthe points (5. 2). (=4.3) (=4 0. (- 1.~ 1).and poinis.
G.-2). So(a) (0L0)yand (-3, 4) G, () (-1 =3)and (-5.4)
(h) (2. Hand (7. 13) () (6. -and ( -1. 1)

2, Draw the square ABCD with vertices (corners) A1, 0). . h
B(0.1). C(=1.0). and D(0. —1). 7- ) (=3.0)and (5.0)
3. (8) Draw the right triangle PQR with vertices /(1. 0). (h) (0. =8) and (0. 1)

Q(5.0).and R(5. 3). 8 () (5 -3and (-9, -06)
(h) Use the formula for the area of a triangle. A = 1bi (b} (3. 3)and (-2 -1)
10 find the arca of triangle POR in part (a). 9. (1. V3)and (1. —V/3)
4. (a) Draw the trapezoid ABCD with vertices A(0,0). 10. (=3, 1) and (374, —335)
B(7.0). C(6.4). and D(4. 4). 11. Which point is farther from the origin?
(b) Compute the area of the trapezoid. (See the inside () (3. =2)or(d})

front cover of this book for the appropriate formula.) (h) (=6.7)or(9.0)



12. Usc the distance formula to show that. in cach case. the

triangle with given vertices is an isosceles triangle.

) 0.2).(7.9).22. -5

(b) (—1.-8). (0. —1).(-4.-49)

(c) (=7.4).(=3.10),(1.3)

In each casc, determine whether the triangle with the

given vertices is a right triangle.

(@) (7.-1)(=3.5).(-12. -10)

(b) (4.5).(-3.9).(1.3)

(¢) (—8.-2).(1.=1).(10.19)

(a) Two of the three triangles specified in Excrcise 13
are right triangles. Find their arcas.

(b) Calculate the arca of the remaining triangle in Ex-
ercise 13 by using the following formula for the
area A of a triangle with vertices (xy. ;). (v2. va).
and (v, v3):

b—
“
&

14

A= %l"'l."l R TR £ 2Rl €4 R S FY Nl SR Y

The derivation of this formula is given in Exercise 34.
(¢) Usc the formula given in part (b) to check your an-
swers in part (a).
Use the formula given in Exercise 14(b) 10 calculate the arca
of the triangle with vertices (1. —4). (3. 3). and (13. 7).
What do you conclude?
The coordinates of points A B. and C arc A(—4. 6).
B(-1,2).and C(2. -2).
(a) Show that AB = BC by using the distance formula.
(b) Show that AB + BC = AC by using the distance
formula.
(¢) What can you conclude from parts (a) and (b)?

—
(7
by

16

In Exercises 17 and 18, find the midpaoint of the line segment
Jjoining points P and Q. ’
17. (a) P(3.2) and Q(9. 8)
(b) P(—4.0)and Q(5. -3)
(¢) P(3.-6)and Q(—1,-2)
18. (a) P(12,0)and Q(12.8)
() P(3. -3)and Q(0.0)
(¢) P(l.7)and Q(3.37)

In Exercises 19 and 20, the given points P and Q are the endpoints

of a diameter of a circle. Find (2) the cenier of the circle: (b) the

radius of the circle.

19. P(—4. -2) and Q(6, 4)

20. P(1, =3)and Q(-5. -3)

21. (a) Using a coordinate system similar to the one shown
in the following figure (or a photocopy). plot the two
points from Table A corresponding to the data for the
years 1984 and 1992. Ignore the information about the
name of the network.

{b) Use the midpoint formula with the two points that you
plotted in part (a) to obtain an approximation for the
dollar amount paid per TV hour for 1988. (Round the
answer 1o one decimal place.)
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(¢) Compute the percentage error in the approximation
in part (b). The actual 1988 value is given in the table.

= D

z 4

=

Z 354

Ll

5 3

=%

-~ 25

'é

£ 27

z L5

z

= =

= 05-

z ) ) ) , _

e 0l ———t Tt
= - -] [ o =
% % % > =3 E
= = = = = =
= =z = = = S

Year

TABLE A How Much the Networks Paid (per TV hour)
to Televise the Winter Olympics, 1980-1998

1980 1984 1988 1992 1994 1998
(ABC) (ABC) (ABC) (CBS) (CBS) (CBS)

Year
(network)

Millions of
dollars per
TV hour

0.3 1.5 3.3 21 2.5 29

Source: World Features Syndicate

22, (a) Set up a coordinate system with the horizontal r-axis
(running from 0 to at least 6) representing years af-ter
1990 and the vertical P-axis (running from 14 10 at
least 27) representing percentage of sales due to im-
ports: then use it to plot the data in Table B below.
Nowe: you should use a broken vertical axis as in Fig-
ures 11 through 13.

(h) What are the coordinates of the point in your graph
that corresponds to the data for 19907 For 19927

(¢) Usce the midpoint formula with the two points that
vou listed in part (b) to estimate the percentage of im-
port sales for the year 1991. (Round the answer (o one
decimal place.)

(d) Compule the pereentage error in the estimate in
part (¢). given that the actual 1991 value is 24.9%.
[The formula for percentage error is given in Ex-
ample 5(c¢).]

TABLE B Percentage of Retail New Car Sales
in United States due to Imports, 1990-1996

Year 1990 1992 1994 1996
Percentage
duc to imports 258 23.6 19.3 149

Source: American Automobile Manufacturers Assn.

23. Over the past two decades the Internet has grown very
rapidly. Figures A and B provide estimates for the number
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1 of Internet host computers, worldwide, Tor the years
1 = 1995-1997 and 1985-1987. Source: Network Wizards
(htp//www.nw.com)

= n 7 H

zZ :

= 30 ° 7 30 L

ERRE Exni °

3 26 + z 26

z 4t ERRTIE

£t £

3 £ 20

218+ 7 I8

g 16| T'; 16

St e 2

ENRR 2 12

T 0t = 10

s 87 = 08

< 67 2 6}

.t £

z 2 Z 2l o

; '~ : —p '%: el : -

hd 1995 1996 1997 S 1985 1986 1987
Year ¢ Year:

Figure A Figure B

(1) Use Figure A to complete the following table. Round
the values of 2 to the nearest two million. T'hen use
the midpoint formula and the numbers in your table
to estimate the global number of Internet host com-
puters for the year 1996.

t 1995 1997

(b) Use Figure B 1o complete the following table. Round
the values of 7 to the nearest two thousand. Then use
the midpoint formula and the numbers in your table
to estimate the global number of Internet host com-
puters for the year [986.

t 1985 1987

(¢) Compute the pereentage errors to determine which
estimate. the one for 1986 or the one for 1996, is more
accurate. Use the following data from Nenvork Wiz-
ards (hup/iwww.nw.com) in computing the percentage
errors: The number of host computers for 1986 and
1996 were 5089 and 21.819.000, respectively. (Round
cach answer to the nearest one percent.)

Note: You'll lind out in part (¢) that one estimate is very good,
the other is way off. The point here is that without more initial
information. it’s hard 1o say whether the midpoint formula will
produce a useful estimate. In subsequent chapters, we'll use

functions and larger data sets to obtain more reliable estimates.

24. Mave you or a Iriend ever run in a 10K (10.000 meter) race?

When the author polled his precalculus class at UCLA in
Fall 1997, he found that there were five students in the class
(ot 160) who said they had run a 10K in under 50 minutes.
Of those tive, two (one male, one female) said they had run
a 10K in under 40 minutes. The world record for this event
is well under 30 minutes. In this exercise vou'll look at some
ol the world records in this event over the past decade.

() The table that follows lists the world records in the
(men’s) H.000 meter race as of the end of the v
1993, 1995, and 1997. After converting the times into
seconds, plot the three points corresponding to these
records in a coordinate system similar 1o the one

shown,
Year Time Runner
1993 26:58.38 Yobes Ondicki (Kenya)

1995 26:43.53
1997 26:27.85

Haile Gebrselassic (Kenya)
Paul Tergat (Kenya)

¥ (scconds)

1620 -
1616 -}
1612 |-
1608 -
1604 -
1600
1596 |-
1592 -
1588 -
1584 -

1 (year)

1993
1994
1995
1996 -+
1997
1998

(b) Use the midpoint formula and the data for 1993 and
1995 to compute an estimate for what the world record
might have been by the end of 1994, Then compute the
percentage error (rounded to two decimal places),
given that the record at the end of 1994 was 26:52.23
(set by William Scigei of Kenya). Was vour estimale
too high or too low?

(¢) Usc the midpoint formula and the dita for 1995 and
1997 to compute an estimate for what the world rec-
ord might have been by the end of 1996, Then com-
pute the pereentage error given that the record at
the end of 1996 was 26:38.08 (sct by Safah Hissou of
Maoroceo). Was vour estimate too high or too low? Is
the pereentage error more or less than that obtained
in part (b)?
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(d) Using a coordinate system similar to the one shown in

part (a). or using a photocopy. plot the points corre-

sponding to the (actual. not estimated) world records

for the years 1993, 1994, 1995, 1996, 1997, and 1998,

Except for 1998, all the records have been given above.

The world record at the end of 1998 was 26:22.75 (set

by Haile Gebrselassic of Kenva). Use the picture you

obtain to say whether or not the record times seem to

be leveling off.

Sketeh the parallelogram with vertices A(-7. - 1).

B4, 3). C(7.8). and D(-4.4).

(b) Compute the midpoints of the diagonals AC and B1).

(¢) What conclusion can you draw from part (b)?

The vertices of AABC are A(1. 1), B(Y. 3). and (3. 3).

(1) Find the perimeter of AABC.

(b) Find the perimeter of the triangle that is formed by
joining the midpoints of the three sides of AABC.

(¢) Compute the ratio of the perimeter in part (a) 1o the
perimeter in part (b).

(d) What thecorem from geometry provides the answer for
part (¢) without using the results in (a) and (b)?

Use the Pythagorean theorem 1o find the length « in the

ligure. Thenfind b, . d.e. fLand g.

(a)

Note: This figure provides a geometric construction [or
the irrational numbers V2. V300 Vi where nis a
nonsquare natural number. According to Bover's -
History of Mathematics, 2nd ed. (New York: John Wiley
& Sons, Inc., 1991). “Plato . . . savs that his teacher
Theodorus of Cyrene . .. was the first to prove the irra-
tonality of the square roots of the nonsquare integers
from 310 17, inclusive, Itis not known how he did this,
nor why he stopped with VT7." One plausible reason for
Theodorus's stopping with V17 may have to do with the
tigure shown here. Theodorus may have known that the
figure begins 1o overlap itsell at the stage where VIS
would be constructed.

(A numerologist’s delight) - Using the Pythagorean
theorem and your calculator, compute the arca ol a right
triangle in which the lengths of the hypotenuse and one
leg are 2045 and 693, respectively.
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The diagonals of a parallelogram biscet cach other. Steps

(). (D) and (¢) outline a proof of this theorem. {See Exer-

cise 25 for a particular instance of this theorem.)

(a) In the paraliclogram OABC shown in the ligure,
checek that the coordinates of B must be (¢ + b, c).

(b) Usc the midpoint formula to calculate the midpoints

(¢) The two answers in part (b) are identical. This shows
that the two diagonals do indeed bisect cach other. as
we wished to prove.

Cib. o) B

O L

0 A, 0)

Prove that in a parallelogram. the sum of the squares
of the lengths of the diagonals equals the sum of the
squares of the lengths of the four sides. (Use the figure
in Iixercise 29.)

Suppose that the coordinates of points 2, Q. and M are

P(xy. ») Qv ¥2)

\/ TR G S i VY
iV 5 . 9

Follow steps () and (b) to prove that M is the midpoint of

the line segment from P to Q.

(2) By computing both of the distances ’A and MQ.
show that 2M = MQ. (This shows that M lies on the
perpendicular bisector of line seament Q. but it dous
not show that M actually lies on PQ).)

(h) Show that ’M + MQ = PQ. (This shows that A does
tic on Q)

This problem outlines once of the shortest proofs of the

Pythagorcan theorem. The proof was discovered by the

Hindu mathematician Bhaskara (1114 -ca. 11835). (For

other proofs. see the next exercise and also Excereise 100

on page 83.) In the figure we are given a right triangle

ACHE with the right angle at C, and we want (o prove that

o+ b= ¢ Inthe figure, €D is drawn perpendicular

10 AB.

(a) Check that £CAD = £DCB and that ABCD and
ABAC are similar.

(b) Usce the resultin part (a) 1o obtain the equation
afv = cfa, and conclude that &° = cy.

(¢) Show that AACD is similar to AABC, and usc this to
deduce that b = ¢ - ¢v.
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(d) Combine the two equations deduced in parts (b) and

(¢) to arrive at @ + b* = .

33. One of the oldest and simplest proofs of the Pythagorean
theorem is found in the ancient Chinese text Chou Pei
Suan Ching. This text was written during the Han period
(206 B.Cc.—A.D. 222). but portions of it may date back to
600 B.C. The proof in Chou Pei Suan Ching is based on
this diagram from the text. In this exercise we explain the
details of the prool.

P ™
N/ /\

/
A

‘N £
re i
.
/N OA
N4 o, ‘P/
N~ A
N

/

A diagram accompanying a prool of the “Pyvthagorean”™
theorem in the ancient Chinese text Chou Pei Suan Ching
[from Science and Civilisation in China, vol. 3, by Joseph
Needham (Cambridge. England: Cambridge University
Press. 1959)].

() Starting with the right triangle in Figure AL we make
four replicas of this triangle and arrange them to form
the pattern shown in Figure B. Explain why the outer
quadrilateral in Figure B is a square.

o

Figure A

Figure B

(b) The unshaded region in the center of Figure Bisa
square. What is the length of cach side?

(¢) Theareaof the outer square in Figure B s (side)” = ¢
This arca can also be computed by adding up the arcas
of the four right triangles and the inner square. Com-
pute the arcain this fashion. Alter simplifying. you
should obtain @® + b°. Now conclude that o + b = ¢
since both expressions represent the same arca.

34, This problem indicates a method for caleulating the arca
of a triangle when the coordinates ol the three vertices are
given.

(1) Calculate the arca of AA8C in the ligure.
N

L G728

B(8.5)

Hinr: First caleulate the arca ol the rectangle enclos-
ing AABC, and then subtract the arcas of the three
right triangles.

(b) Calculate the area of the triangle with vertices (1. 3).
(4. Dyoand (10, 4). Hiwe Work with an enclosing
rectangle and three right triangles. as in part (a).

(¢) Using the same technique that vou used in parts (a)
and (b). show that the arca of the triangle in the fol-
lowing figure is given by

A= }f.l'L\': = ¥V T XYy T Vs T T oY)
Remark: 1f we use absolute value signs instead of the
parentheses. then the formula will hold regardless of
the relative positions or quadrants of the three ver-
tices. Thus the area of a triangle with vertices (v, v,).
(20s. vs). (5. ) is given by

1 . §
P e B B i O LT St ) Uit o L S Y U SR O
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